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Disclaimer

This report waprepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or
resposibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, meskeytrade name,

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein dmeoéssarily state or reflect those of the United

States Government or any agency thereof.
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Abstract

Sound policy recommendations relating to the role of forest management in mitigating
atmosphericarbon dioxide €O,) depend upon establishing accurate methodologies for
quantifying forest carbon pools for large tracts of land that can be dynamically updated over
time. Light Detection and Rangindg.iDAR) remote sensing is a promising technology for
achieving accurate #ates ofaboveground biomassd thereby carbon poglsowevernot
muchis known about the accuracy of estimating biomass chamgiearbon fluXrom repeat
LiDAR acquisitions containing different data sampling characteristics.

In this studydiscrete eturn airbornd.iDAR datawas collected in 2003 and 2009 across
~20,000hectaresia) of an actively managed, mixed conifer forest langeda northern Idaho,
USA. Forest inventory plots, established via a random stratified sampling design, were
establisked and sampled in 2003 and 200%he Random Fest machine learning algorithm was
used to establish statistical relationships between inventory data and forest structural metrics
derived from the LiDAR acquisition&boveground biomass maps wereated ér the study

area based on statistical relationships developed at the plot level.

Over this 6year period, we found that the mean increase in biomass due to forest growth across
the nonharvested portions of the study area waswe®&ic ton/hectareMg/ha). In these non

harvested areas, we found a significant difference in biomass increase among forest successional
stages, with a higher biomass increase in mature and old forest compared to stand initiation and
young forest. Approximately 20% of the landpe hadeen disturbed by harvest activities

duringthe sixyear time period, representing a biomass loss of >70 Mg/ha in these areas. During
the study period, these harvest activities outweighed growth at the landscape scale, resulting in
an overall lossn aboveground carbon at this site. Tief@d increase in sampling density

between the 2003 and 200&i not affect the biomass estimates.

Overall, LIDAR data coupled with field reference data offer a powerful method for calculating
pools and changen aboveground carbon in forested systems. The results of our study suggest
that multitemporal LiDARbased approaches are likely to be useful for high quality estimates of
aboveground carbon change in conifer forest systems.
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1. Introduction

Forestscover approximately one thimf t he Ear t hhiewhave atmethendousr f ac e .
potential to store and cycle carbon (Harmon and Marks, 2002), and therefore represent a crucial
component of the global carbon cycle. The Food and Agriculture Organizatios dhited

Nati onds Resmbcad AssessmeatgRRA, 2088imates thaheworld's forests

store 283Gigatonnes@t) of carbon in their biomass alone, and that the total carbon stored in
forested ecosystems, including live and dead wood, litter, detritus, and soil, exceeds the amount
of carbon found in the atmospheBecause of continued pressure on forest resourgesvale
environmental services for the ever growing global human populatiemterest in quantifying
carbon pools and fluxes over largeographi@reas has increasedes\the past decades. In
particular, forest carberelated research includes

1 quarifying the role of forest dynamics in the global carbon cycle,

1 assessing human impacts (e.g. harvest, prescribed fire, land use change) on forest carbon
flux and storage,

1 estimating how natural forest processes (i.e. insect attacks, wildfires, winjitiffeat

the global carbon cycle,

providing carbon accounting to satisfy local globatscale policy agreements,

guantification of timber volume and growth for commercial interests, and

assessment of carbon storage in the context of maintaining &isidgvand wildlife

habitat quality and connectivity.

= =4 =4

Regardless of theeason for inquiry, androcess by which forest carbon storabangesit is

critical to establish repeatable, objective, andurate methodser estimatingabovegrond

forest carba pools and fluxes over large areas. Direct, diussale measurements of the carbon
exchange between forests and the atmosphere are commonly accomplished with measurements
from continentaland globalscale networks of eddy covariance flux tomg.g Schwalm et al.

2007). These methods are extremely valuable in quantifying net carbon exchange between the
biosphere and the atmosphere; however, the estimates can be noisy, affected by windy conditions
and structurally complex vegetation and topography, limited in geographic extent (Hollinger

and Richardson 2005). Ecosystem process mosigth as Biom8GC, ForesBGC, 3PG and

3PGS, are useful for better understanding of carbon pools and fluxes in f(iRestsing and

Coughlan 1988, Running and Gawi®91, Landsberg and Waring 1997, Coops et al.,1998

Waring et al. 2010

Integration of these ecosystem process models with remote sensing of land surface
characteristics have greatly improved our ability to make regional assessments of carbon pools
and fluxes (e.g. Turner et al. 2004). Although information from passive resmogeng (e.g.

Advanced Very High Resolution RadiometdaMHRR], Moderate Resolution Imaging
SpectroradiometeMODIS], Landsat) have contributed to regional estimat&srogs Primary
Production GPB andNet Primary ProductionNPP), challenges remaiim optimizing the

spatial resolution of remotely sensed data for specific applications and differentiating the relative
influences of vegetation structure and chemical variables (Turner et al. 2004). As affedslt, e

to quantify foresgrowth (i.e. crange in aboveground carbon poals)ng traditional passive

remote sensing imagery have had limited sucfés®t al. 2008)
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Remote sensing approaches for quantifying forest structure and volume are rapidly evolving.
Vine and Sathaye (1997) suggest tnabiider to quantify aboveground forest carbon pools and
fluxes across broad extents, it is important to combine remote sensing techniques with carbon
estimation methods that are based on existing standard forest inventory prihggbies

Detection and Raging (LIDAR) has been successfully employed for characterizing vertical
structure and forest attributes such as canopy height distribution, tree height, and crown diameter
(Nilsson 1996, Hudak et al. 2002, Lefsky et al. 2002, Yu et al. 2008). Howeveu gttt

processes governing forest biomass pools are highly dynamic iretmmest allLiDAR -based
studies aimed at quantifying carbon pdudse been based upon sindkgte data acquisitions,

and are therefore limitetd providing estimates at a single ppioin time. Robust methods for
producing walto-wall maps of above ground forest carbon using LIDAR combined with field
data collections and Monte Carlo methods have recently been developed with errors < 1%
(Gonzales et al. 2010).

Time series remote sang studies have been used to estimate both carbon pools and net change
in aboveground carbon. In a study by Asner et al. (2003), researchers studied pools and fluxes of
carbon in semiarid woodlands, using texture analysis of black and white aerial ppbtofyom

1937 compared to spectral mixture analysis of Landsat data from 1999 to estimate the change in
above ground woody carbon pools and the net flux over the 62 year time period. Strand et al.
(2008) estimated net change in above ground woody carssracbs?2 year time period using®2

spatial wavelet analysis on time series black and white aerial photography and allometric
relationships. Tree growth in a conifer plantation was estimated over a 19 year time period using
synthetic aperture radar (SARadkscattering changes, with a resulting root mean square error
(RMSE) in tree growth of 8.theters n) (Balzter et al. 2003). Yu et al. (2008) used multi

temporal LIDAR acquisitions (10 pointsfjrto predict volume and mean height growth in mixed
multi-stary boreal forests in Finland with a standard deviation of the residuals e0BQ5%n for

mean height growth. While these studies showed promise fortemltioral LIDAR based
assessment of forest growth, additional work remains to extend this appraheh t

guantification of carbon (biomass) in forests over time.

The objective of this research is thereftm&ombinemulti-temporal LIDARremote sensing

with forest inventorysuiveys and statisticahodeling to characterizearbon poolsnd predict

ratesof aboveground carbon sequestratiomanaged mixed coniféorests @ the Northern

Rocky MountainsSA). Thisprojectbuilds on forest inventory data collection and a LIDAR
acquisition from the summer of 2003 (Evans and Hudak 206i)plemented withisiilar data
acquisitions from 2009We quantify thempact onforest growth and timber harvest on forest
carbon pools across the landscape, and examine relationships among changes in these pools
during this Byear interval with respect to forest heightlaauccessional statué/e anticipate

that our work will not only serve to quantify forest carbon fluxes and pools, but will also
establish additional rationale for acquiribdpAR data of forest land across the United States.
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2. Methods
2.1  Study Area

The study is centered in the Palouse Rang8,0@®hectareshd;L at i t ude 46 A 48N;j
Longi t udWw), lbchatédA noBh2rNjldaho, USAFigurel). Theareais topographically

complex ranging from 780 m to 1520 m in elevation. Climate is characterized by a warm dry
summer and fall, and a wet winter and spring when most of the meaal awverage

precipitation of 630 1015millimeters (nm) falls in the form of snow in the winter and rain in

the spring. Vegetation grimarily comprised of temperate mixewnifer forest with dominant

species being Ponderosa piRenus ponderos&. Lawon var. scopulorurkEngelm), Douglas

fir (Pseudotsuga menziefiflirb.) Franco var. glaucgBeissn.) Francp grand fir Abies grandis
(Douglas ex D. Don) Lindl, western red cedaf fiujaplicata Donn ex D. Dol andwestern

larch (arix occidentalisNutt).

The land ownership is dominated by private timt@mmnpaniesvith many private and publiand
inholdings.Inholdings includea large tract oUniversity of Idahcexperimental foredand,the
watershed for the city of Troy, Idahand a small parcelf old-growth western red cedar

managed by Latah county aptbtected for biodiversitgonservation. Theariety of habitat

types and thenigue management goals and strategies of @fitielandownershas created a

forest that is diversi species compdson, standage, and structure, representing a variety of
biophysical settings and foresiccessional stag€Falkowski et al. 2009Major disturbances
occurring during the time period 2003 to 2009 include forest management such as harvest,
thinning, anl prescription fire. The study area is bounded to the north, west, and south by highly
productive dryland agricultural fields producing crops that include wheat, lentils, and chick peas.

| ‘.r”'/,—,,u

Elevation 75,.'}{i’

meters AR
High : 1516

Y Location of Moscow Mountain

Low : 779 in the state of idaho
O Field plots 2003 - ( ) e
X Field plots 2009 0o 15 3 6 9
[ mam aaees— |

D Boundaries for 2007 and 2009 lidar acquisitions Kilometers

Figurel: Location of the Moscow Mounitastudy area in north central Idaho. The extent of t
DEM reflects the boundary of the 2003 LIDAR survey.
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2.2

LIDAR Surveys and Processing

LiDAR data was flown during three time periods, 2003, 2007, and 2009. The 2003 LIiDAR
survey was flown by Horizons, Inc. (Rapid City, SD, USA), the 2007 survey by Surdex
Corporation (Chesterfield, MO, USA), and the 2009 survey by Watershed Sciences, Inc.
(Portland, OR, USA). The extent of the 2003 LIiDAR survey was 32,708 ha, while that of

2007 (1,681 ha) and 2009 (19,889 ha) LIiDAR surveys was a combined 20,624 ha (they overlap

by 106 ha), which lies wholly within the extent of the 2003 LIDAR sur¥egurel).
Acquisition parameters of these LIDAR surveys are providdabiel. The difference in the
LiDAR survey point densities in the acquisitions from 2008 2009 are illustrated iRigure?2.

Tablel: Acquisition parameters of the 2003, 2007, and 2009 LiDAR surveys

Survey Date | Altitude | LIDAR | Multiple | Footprint | Scan Average | Average
Above | System | Returns | Diameter | Angle | Post Point
Ground Spacing | Density
Summer 2003| 2438 m | ALS 40 | Upto 30 cm +/-18° | 1.58m 0.40/nf
3/pulse
7 July 2007 |1219m | ALS50 |Upto 30cm +/-15° [ 0.41m 5.98/nf
4/pulse
30 June 2009|2000 m | ALS50 | Upto 30 cm +/-14° |1 0.29m 11.95/nf
4/pulse
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Figure2: Comparison of LiDAR survey point densities in 2003 (0.4 poirftséft) and 2009 (12
points/nf, right) at the scale of a single undisturbed éhasnventory plot (#2899), as viewed

from overhead (top) and from the side before detrending for topography (middle) and afte
(bottom). Note that despite the-88ld difference in point density betweerettwo surveys, the

vertical distribution of points indicative of canopy structure is consistently shaped, making
plot-level canopy height metrics directly comparable. Mean height in this plot increased 2.
from 2003 (4.0 m) to 2009 (6.0 m) as indexhby the dotted horizontal lines.
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The 2009 LIDAR data was delivered in the comnhog ASCII Standard (LAS)LIDAR format,

and the libLAS library for reading and writing such data was used to extract the data into text
files (http://liblas.org). The flow of LIDAR processing steps is diagrammeéigure3. The

data was delivered in tiles,ith a size of <0.5 million points per tile. For each LIDAR point, the
following characteristics were delivered:

x and y coordinates,
absolute elevation (z),
the number of LIDAR returns at this location and the return number for the @adht,

1
1
1
1 the lasereturn intensity ranging from 0 to 255.

Lidar
survey

2003 ¢ :
\ e Computat!on of Ctamputatl'on 'of
| o rati s vegetation Lidar metricsin
A 8 via MCC heights via DEM 20m pixels
Lidar / U subtraction (R-script)
surveys
2007/2009 GROUND|RETURNS
\; i f 4 li
Ir;t'el:::ol :tlon, g Resze;)mp mg ro Biomass estimate via
S > o —> Random Forest
Field data model via derivation of dlserithn
plots TOPOGRID topometrics

|

Figure3: Procedure for deriving biomass estimates from remote sensing LIDAR data and 1
information. The LIDAR surveys from 2003 and 2007/2009 were processed separately to
estimateabove ground woody biomass followed by grid subtraction to obtain the change ir
biomass.

Points were converted from text format into the Arcinfo coverage format using the GENERATE
command in Arc Macro Language (AML). The ground returns were separatedhfeo

vegetation returns with the multiscale curvature classification method (MCC, Evans and Hudak
2007). The scale parameter used in the MCC AML was set to match the LiDARpposig,

and we used a curvature parametfed.8 a tension parameter 0f07and a 5 pixel kernel. A

digital terrain model of 1 m pixel resolution was created from the LiDAR ground returns through
interpolation of the z values using the TOPOGRID function in Arcinfo, which generates a
hydrologically correct grid of elevation frommaund point data.

Because of the high density of the dataset, it was necessary to process thedbhidAR10
independent yet overlapping tiles that were later merged. Care was taken not to introduce edge
effects in each tile by removing the overlapping edge pixels prior to merging the tiles. Vegetation
height for each LIDAR return was computed by satting the value of the digital terrain model

from the LIDAR zvalue. A few instances of anomalously high points (e.g. > 100 m)

representing LIDAR returns from birds or other particles in the air were removed from the
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dataset. LIDAR data from the 2003 agsjtion was processed in a similar fashion; see Evans and
Hudak (2007) for a detailed description of the 2003 LiDAR points.

LiDAR vegetation structure metrics were computed for both the 2003 and_HDAR

acquisitions based on the height and intendith® LIDAR returnswithin 20 m grid cells across
the study area in the statistical software package R (R Development Core Team 200 The
digital terrain model was resampled to 20 m by the bilinear resampling method in Arcinfo Grid
to match the origimf the LIDAR metrics. Secondary topographic metrics were derived from the
20 m digital terrain model. LIDAR metrics were also computed within each 11.35 m radius
inventory plot, and the topographic metrics were extracted from the 20 m topographiatayers
each plot center.

2.3  Field Sampling

In 2003,the study arewas stratifiedby elevation and solansolationinto nine unique
combinationsinventory plots wersystematicallyplacedwithin each stratunguided by a
Landsat-derived leaf area indgfPocewiz et al.2004). This method of stratification ensured that
theforest inventory plots covered the full range of fotesitat typesnd canopy structure
conditions across the studyea.The 203 LiDAR survey was calibrated amdlidated with 84
field plots, of which 76 were located within the reduced extent of the 2007 (n=4) and 2009
(n=72) LiDAR surveysDuring the summer of 2003nd1.35 mfixedradius 404.69 ) forest
inventory plotwas installed at each sample location. @laneter at breast height (gbtree
speciesireeheight, as well as distanead bearing from plot centaveremeasured and
recorded foamll trees (dbh >2.7 cm) within the fixed radius plot. Seedlings asaplings were
measued and tallied across tieventoryplot. SeeFalkowski et al. (2005jpor additional details
regarding thesampling degjn and data collection procedures

The 2003 field plots were given priority for populating the 2009 stratification. A new private
landowner denied us permissitinrevisit one of our 2003 plots, so only 75 plots were re

measured. In addition, because the landscape had changed since 2003, 14 of the strata were left
unfilled by existing plots, necessitating the addition of 14 new plots. This resulted in 75 + 14 =

89 plots for 2009 model calibration/validation.

2.4  Biomass Modeling

Models for predicting biomass were developed from the field data collected in both 2003 and
2009, using the Random Forest machine learning algorithm (Brieman 2001) based on LiDAR
height metrts, intensity metrics and topographic metrics. The suite of input variables used in the
Random Forest modeling is described by Hudak et al. (2008). Random Forest-is a non
parametric technique that can handle both continuous and categorical independblasvarhe
technique uses a bootstrap approach for achieving higher accuracies compared to traditional
classification tree modeling. Random Forest uses thies@tistic for node splitting which

allows for nonlinear variable interactions. A large numloéiclassification trees are produced,
permutations are introduced at each node, and the most common classification result is selected.
The technique has been used successfully for classifying LIDAR data into forest succession
classes (Falkowski et al. 200%or classifying passive remote sensing data into desired
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vegetation classes (Falkowski et al. 2005), for characterizing mountain pine beetle infestations
(Coops et al 2006) and for estimating forest structure attributes from LIDAR data (Hudak et al.
2008, Martinuzzi et al., 2009).

2.5  Spatial Analysis

Biomass was estimated within each 20 m pixel across the study area by applying the biomass
models developed from field data via the Random Forest algorithm for the time periods 2003 and
2009. Change in biomasser the six year time period was calculated via grids in Arcinfo by
subtracting the biomass estimated for 2003 from the biomass estimated for 2009.

Biomass increase within successional stages was estimated via overlay analysis between a map
of successiaal stages developed for the same study area by Falkowski et al. (2009) and the
change in biomass estimated as part of this project. Successional stages mapped by Falkowski et
al. (2009) included:

1 Openi treeless areas, stand initiation;

1 Stand Initiation(Sl) i space reoccupied by seedlings, saplings or shrubs following a stand
replacing disturbance;

1 Understory ReinitiationR) - older cohort of trees being replaced by new individuals,
broken overstory with an understory stratum present;

1 Young Multistoy (YMS) - two or more cohorts of young trees from a variety of age
classes;

1 Mature Multistory MMS) - two or more cohorts of mature trees from a variety of age
classes; and

1 Old Multistory (OMS) - two or more cohorts of trees from a variety of algesss,
dominated by large trees.

Areas that experienced a decrease in biomass from 2003 to 2009 were excluded from the
analysis to avoid impacts of human activity or natural disturbance in the successional stage
growth estimates. We tested the hypothesisthaae is a significant difference in biomass
increase within undisturbed areas between forest successional stages withag Analysis of
Variance ANOVA). T u k e-hao@ st was entployed to evaluate which of the successional
stages had experienceignificant differences in biomass increase over the six year period.
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3. Results
3.1 Change in Biomass

Both the 2003 and 2009 LiDAR survey landscapes were independently stratified by elevation,
insolation, and canopy cover in stratified random samplasigns. Elevation was obtained from

a USGDigital Elevation Model DEM), and an insolation layer calculated using Solaalpst

(Fu and Rich, 1999 Canopy cover was estimated from satellite irrdgieved vegetation

indices. Our strategy was to treat etiole period as an independent assessment, as a forest
manager may likely do, so both the 2003 and 2009 biomass models were developed
independently based on all available contemporaneous plot measures from the 2003 (n=84) or
2009 (n=89) field surveys. Vable selection from a suite of 49 candidate LIDAR height,

density, and intensity metrics was also performed separately yet consistently.

A Random Forest model selection function that uses Model Improvement Ratio (MIR)
standardized importance values (Evand Cushman 2009, Evans et al. 2010, Murphy et al.
2010) was used to choose the most important predictor variables from the suite of candidate
LiDAR metrics. In the interest of parsimony, models with selected predictor variables that were
highly correlatd ( Pear son6s r > 0.9) were pruned to
Pearson's r < 0.9. In cases where r > 0.9, the variable with lesser importance according to the
MIR statistic was excluded from consideration, and the model selection functioraeesrch

for alternative predictors. The function selected a total of eight metrics for predicting 2003
biomass and ten metrics for predicting 2009 biomaablé2, Figure4, & Figure5). The most
important metric was mean height, followed by several othghhalensity and intensity

metrics, while no topographic metrics were selected. The Random Forest algorithm in R (R
Development Team, v2.10.0) was then used to predict biomass in 2003 and 2009 from these
variables Table?2), with their importance values shownhkigure4 andFigure5.

Table2: LIDAR metrics selected for the independent 2003 and 2009 biomass models.

Metric Metric Description 2003 Biomass Model| 2009 Biomass Model
hmean Height mean * *
hmad | Height median absolute deviatid *
hmax Height maximum *
h90th Height 90" percentile *
hskew Height skewness * *
higr Height interquartile range * *
crr Canopy relief ratio *
stratum?2 Stratum 2 canopy density *
stratum4 Stratum 4 canopy density * *
stratum5 Stratum 5 canopy density * *
imean Intensity mean * *
i10th Intensity 18" percentile *
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Figure4: Random Forest variable importance measures for the 2003 biomass model acco
two statistics: Mean Decrease Accuracy (%IncMSE) (left) and Mean Decrease Gini
(IncNodePurity) (right). The most important variables are sorted decreasingly from top to
bottom.
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Figure5: Random Forest variable importance swas for the 2009 biomass model according
two statistics: Mean Decrease Accuracy (%IncMSE) (left) and Mean Decrease Gini
(IncNodePurity) (right). The most important variables are sorted decreasingly from top to

bottom.
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While the full count of plat could be used to develop the independent 2003 and 2009 biomass
models, only the 75 plots common to both field surveys were available for comparihgyplot
biomass predictions. Plots of predicted biom&$gure6) and biomass changEigure7) reveal
considerable scatter around the 1:1 line beedhe models include both undisturbed and

disturbed plots, as is also evident in the observations. Partitioning the data into the undisturbed
and disturbed plot classes as they were called in the field reveals greater sensitivity and accuracy
in the modépredictions relative to observatiorfagure8). However, the difference between
independent 2003 and 2009 biomass predictions was conservatess tiran observed, in both

the undisturbed and disturbed plots.
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Figure6: Predicted vs. observed aboveground tree biomass from the independent 2003 ar
models.
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2003 to 2009 Tree Biomass Change, Predicted vs. Observed
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Figure7: Predicted vsobserved aboveground tree biomass change from 2003 to 2009
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Figure8: Observed and predicted aboveground tree biomass change in undisturbed (top)
disturbed (bottom) plots

Closer examination of the most important predictor variable in both the 2003 and 2009 models,
mean canopy height, reveals the sensitivity and accuracy of the LIDAR canopy height
distributions despite different point densiti€sgure9).
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Figure9: Mean canopy height in 2003 and 2009 and mean canopy height change in undis
and disturbed plots

Biomass estimates for the region werapped at a 20 m pixel resolution based on models
developed at the plot level for the two time periods 2003 and Z@9ré10). Biomass change
was derived by subtréing the two mapsHigure11). Removed from consideration were

nonforested agricultural areas classified from the LiDAR as having zero canopy density in both
2003 and2009, amounting to 6.1% of the landscape, found mostly around the periphery of the
study area. A histogram of the biomass change was derived for a better understanding of the

biomass change distributioRigure12). Harvested areas ihaé biomass change mégigurel11l)
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were defined as a loss in biomass of 70 Mg/ha or more. After six years, the mean biomass
increase across the unharvested forest (73.7% of the study area), excluding nonforest agricultural
areas (6.1% of study area), was 4.8Mg/ha (standard deviation 34.2 Mg/ha); mean biomass
decrease in harvested forest areas (20.2% of the study area) was 185.1 Mg/ha (standard deviation
97.1 Mg/ha).

Biomass

Mg/ha
[ Jo-100
[ ] 100-200 N
I 200 - 300 B ]
B 300 - 400 0 12525 5 75

HN TN s
- 400 -734 Kilometers

Figure1l0: Mapped 2003 and 20Gthoveground tree biomass predictions across the combin
extent of the 2007 and 2009 LiDAR surveys
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Figurel2: Histogram of biomasshange with the class breaks in Fig. 11 included (y axis
represents number of pixels)

Whether or not a 2003 inventory plot was disturbed was recorded during the 2009 field visits;
this information was used to objectively determine a disturbance thre3ihadliscrepancy
between biomass change observed at the field (fajare8) and biomass change estimated

from the maps may be attributable to field plot classifications of disturbance that included even
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minor management interventions besides harvest disturbance. Of the 89 inventory plots
characterized in 2009, 75 were revisigiD3 plots. Twenty of the 75 revisited plots (26.7%)
were labeled as disturbed in the 2009 survey. At the landscape level, 20.2% of the 20,624 ha
landscape with repeat LIDAR coverage was classified as harvested using thisMg/ha
disturbance threshald

Predicted aboveground tree biomass and biomass change were extracted from tReggoaps (

10& Figurell) at the remeasured field plot locations (n=75) and at systematic 500 m intervals
(n=810 samples). Plots of these data versus mean height, the most important predictor variable in
both the 2003 and 2009 biomass models rexeibse linear relationshifgigurel3). The

relationship of aboveground tree biomass to maximum canopy hEighté14) and canopy

density (not shown) is curvilinear and much looser. Further examination of estimated biomass
change at undisturbed sites, calculated as the difference between the 2009 and 2003 biomass
predictions athe field plots and systematically sampled landscape sites, revealed no relationship
between aboveground tree biomass accretion and mean canopy height; however, it did show a
relationship to height growtlF(gure15).
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3.2  Biomass by Successional Stage

Analysis of variance confirmed that there is an overall difference (df =5, F = 261, p < 0.0001) in

biomass increase within the six successional stages evaluated in thig—gjudy16). We

found that the longer the time since disturbance, the greater the accumulation of biomass over the

6-year study period. Biomass accumulation among successionakalesssignificantly
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different, with the exceptions differencesetweenStand Initiation $1) andUnderstory
Reinitiation UR), andbetweenYoung Multistory Y MS) andMature Multistory MMS) not
being significant (p > 0.05).

70
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open si ur yms mms 0ss
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Figurel6: Above ground woody biomass change within previously mapped successional <
The error bars indicate the 95% confidence intervals. Overall, the biomass change within
successional stages is significantly different (p< 0.00049.differencédetween Sl and UR is
not significant (p > 0.05) and neither is the difference between YMS and; MIM&her
pairwise comparisons are significantly different, however.
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4. Discussion
4.1  Effects of Differences in LIDAR Acquisitions

Boththe 2003 and 2009 LiDAR survey landscapes were independently sampled using stratified
random sampling designs for distributing field plots in a representative yet unbiased manner.
Therefore, our strategy was to treat them as independent assessmenteatéhis should prove
heartening for others attempting to conduct a biomass/carbon change assessment via repeat
LiDAR surveys but with several important considerations.

First, LIDAR sensor capabilities are advancing at a high rate. Hhel@@tnean differene in

point densities between the 2003 and 2009 LiDAR surveys did not affect our biomass estimates
at the plot level, because the distribution of canopy heights was dtahlee@). This suggests

that if the pulse energy, footprint size, and scan angle are held constant, the probability that a
LiDAR pulse will penetrate the canopy, reflect off the ground, and then pass back through the
canopy to the sensor should be the same regardless of the pulse deiéiy)( Therefore,

LiDAR data from different LIDAR systems (in our case, the ALS40 and ALS50 in 2003 and
2009, respectively) are directly comparable when aggregated to an appropriate scale. The 0.4
points/nf mean point density of the 2003 survey translat@srtean of 160 points per 0-ha

(400 nf) plot, which is a sufficient number of points to produce a stable canopy height
distribution from which to extract canopy height metrics. The mean of 4790 points/plot collected
in 2009 represents ovsampling athie plot level of aggregation, but may be sufficiently dense

for individual tree characterization in the future, as LIDAR sensor capabilities continue to
improve.

Other metrics exhibited the same trends as mean canopy height with regard to the undsturbed
disturbed plotsKigure8), but are not shown for brevity. Maximum canopy height may be a less
reliable predictor to compare in our case, becausetuch higher LIDAR pulse density in 2009
than in 2003 would translate into less height underestimation bias (i.e., higher accuracy) while
mean canopy height would not be subject to such a bias.

The selection of locations for field plots based on a laqpksstratification will change if the

landscape changes, which is a given, or if the extent of the study landscape changes, as was also
the case in our study. It is important that the calibration/validation plots represent the landscape

in a representativget unbiased manner. This can be accomplished through random or random
stratified sampling designs conditioned on the spatial extent of the landscape they represent, or
systematic monitoring plots as used by the USFS Forest Inventory and Analysis pieidgram

The coarse spatial frequency of FIA plots relative to this and most other LIDAR project areas
requires more intensive localized sampling to adequately characterize the range of variability in
forest structure conditions of interest.

4.2 Biomass Gaingy Successional Stage

Assessing biomass accumulation over large areas and extended timeipessdstial for

improved estimates of carbon pools and fluxes and potential effects on the global carbon budget
(Strand et al. 2008). Stand age has been shgvseveral researchers to affect ecosystem carbon
uptakesFor examplelLaw etal. (2003) recordedifferences in carbon accumulation rates along

a chronosequence after a clearcut in ponderosa pines ponderosan Oregon. Young
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regenerating stands wefiaind to losecarbon to the atmosphekghile olderstands were
accumulating carbon up to an agel60-200 years of age when the cartamtumulation rates

were reduced agaisimilarly, Schwalm et al. (2007) recorded carbon losgaung stands (< 20
years) followed by an increased ecosystem net primary productivity with increased stand age in
Douglasfir (Pseudotaga meziesjiin British Columbia using eddy covariance flux

measuements. Although successional stages are not nedgsstated to stand age, we found

that successional stages containing mature and old trees stored more carbon over a six year time
period than did stands composed of younger tieégsie8). Because the majority of the study

area is managed, and harvest has occurred in most places within the past 100 years, we did not
expect to find a decrease in biomass accumulation for successional stages ddiyitzaites

trees at this point in time. Potentially, a future lack of disturbance in the area would lead to
decreased carbon accumulation at some point in tioeever, the current data did not allow us

to test this hypothesis.

4.3 Sources of Error

Although 750f the 2003 field plots were smeasured in 2009, they were unfortunately not

marked with permanent monuments in 2003, only geolocated with differential GPS to a
horizontal uncertainty of <2m. The 2009 field crews placed (and geolocated also with tiiferen
GPS) the 2009 plot centers as nearly as possible to the 2003 plot center locations, but the
differences between 2003 and 2009 plot locations vary from 0.46 m to 9.25 m with a mean of
2.67 m and a standard deviation of 1.65 m. These mismatches daladeithe additive

uncertainties in the 2003 and 2009 plot locations. This geolocation error can amount to a large
source of error at the fine scale of canopy structure variation that is undoubtedly contributing
greatly to the scatter in the biomass cleasgtimates illustrated in Figs.76 The results are
nevertheless encouraging because these errors should be randomly distributed, which is why the
mean estimates of predicted biomass change in Fig. 7 are reasonable. This is the major reason we
have preseted only independent 2003 and 2009 biomass models in this report, rather than a
attempt to model biomass change directly.

Our solution for model refinement is to reconcile the 2003 and 2009 tree lists, since trees have
the useful quality of immobility. fie trees also were not labeled by permanent tree tags in 2003,
only temporary ones. However, the distance and bearing to measured trees was recorded.
Therefore, by graphically comparing the plietel stem maps and identifying the same trees, we
can calcuhte x and y offsets between the 2003 and 2009 plot locations and adjust them
accordingly. Recalculating pki¢vel LIDAR metrics from the corrected plot footprints should

lead to more consistent predictions and greatly reduce the scatter in-Fjgmrfcularly the
undisturbed plots in Figs-B that would exhibit greater sensitivity to shifted plot footprints.
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5. Conclusion

In this study, we demonstrate the utility of using mtdtnporal discrete return airborne LIDAR
surveys in concert with fieé sampling and statistical modeling techniques to quantify
spatiotemporal patterns of aboveground biomass accumulation in a heavily managed conifer
forest. This forest is representative of many forests around the globe in that it is managed by
multiple wser groups, including industrial forestry companies, private owners, and public land
managers. The results of this study indicate that terttiporal LIDAR is an accurate method
that is viable for monitoring broastale changes in aboveground forest bsracross large

tracts of land. As LIDAR data become continually more available across a range of biomes, we
expect that this approach will assist with quantifying the amount of carbon stored in forest
ecosystems and therefore support current and futionéseto mitigate increasing levels of
atmospheric C@
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