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Disclaimer

This report was prepared as an account of work sponbgrad agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completenessjsefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufactureor otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect thobmipéthe

States Government or any agency thereof.
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Executive Summary

There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil
organic carbon (SOC) change for national greenhouse gas accounting and the development of a
soil carbon trding market. Laboratory based soil characterization typically requires significant
soil processingwhich is time and resource intensive. This severely limits application for large
region soil characterization. Thus, development of rapid and accusttteds for characterizing
soils are needed to map soil properties for precision agriculture applications, improve regional
and global soitarbon C) stock and flux estimates and efficiently map-subface metal
contamination, among others. The greagests for efficient soil characterization will come

from collecting soil datan situ, thus minimizing soil sample transportation, processing, and lab
based measurement costédsible and neainfrared diffuse reflectance spectroscopy (VisNIR)

and laseinduced breakdown spectroscopy (LIBS) are two complementary, yet fundamentally
different spectroscopic techniques that have the potential tothieeéed. These sensors have

the potential to be mounted on a soil penetrometer and deployed for rajcbilas|

characterization at field and landscape scales. Details of sensor interaction, efficient data
management, and appropriate statistical analysis techniques for model calibrations are first
needed.

In situor onthe-go VisNIR spectroscopy has beenposed as a rapid and inexpensive tool for
intensively mapping soil texture and organic carbon (SOC). Whitbdabd VisNIR has been
established as a viable technique for estimating various soil properties, few experiments have
compared the predictive @eracy of orthe-go and lakbased VisNIR. Eight north central

Montana wheat fields were intensively interrogated usinthemgo and labbased VisNIR. Lab
based spectral data consistently provided more accurate predictions x@ygordata.

However, mitherin situnor labbbased spectroscopy yielded even sqoantitative SOC
predictions. There was little SOC variability to explain across the eight,fegildsonthe-go

VisNIR was not able to capture the subtle SOC variability in these Montana/gibllsnore
variation in soil clay content compared to SOC, both lab artti@go VisNIR showed better
explanatory power. There are several potential explanations for paloe-go predictive

accuracy: soil heterogeneity, field moisture, consistent sapngsentation, and a difference
between the spatial support of-threego measurements and soil samples collected for laboratory
analysesThough the current configuration of a commercially availabkhergo VisNIR

system allows for rapid field scannirg}the-go soil processing (i.e. drying, crushingda

sieving) could improve soil carbgredictions.

Laserinducedbreakdownspectroscopy (LIBS) is an emergietemental analysigchnology
with the potential t@rovide rapid, accurate and precise analg$isoil constituenfsuch as
carbonin situacross landscape3he research teasvaluated th@ccuracy oL IBS for
measuringsoil profile carbonn field-moist, intact soil coresimulatng conditions that might be
encountered by a probmounted LIBSnstrument measuring soil profile carbiornsitu. Over

the course of three experiments, more thand@t soil cores froneightnorth cetral Montana
wheat fields and the ®shingtorStateUniversity (WSU)Cook Agronomy Farm near Pullman,
WA were interrogated with LIBS for rapid @dtcarbon (TC), inorganic carbon (IC), and SOC
determination. Partial least squares regression models were derived and independently validated
at field- and regional scaleResearchersbtained the best LIBS validation predictions for IC
followed byTC and SOC. Laserinduced breakdown spectroscopy is fundamentally an
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elemental analysis technique, yet LIBS PLS2 models appeared to discriminate IC from TC.
Regression coefficients from initial models suggested a reliance upon stoichiometric
relationships bveencarbon(247.8 nm) and other elements related to total and inorganic carbon
in the soil matrix [Ca (210.2 nm, 211.3 nm, and 220.9 nm), Mg (2728854 nm, 285.26 nm),

and Si (251.6 nm, 288.1 nm)]. Expanding the LIBS spectral range to capture pgnissio a
broader range of elements related to soil organic matter was explored using two spectrometer
systems to improve SOC predictions. Results for increasing the spectral range of LIBS to the
full 200-800 nm found modest gains in prediction accufacyC, but no gains for predicting

TC or SOC. Poor SOC predictions are likely a function of 1) the lack of a consistent/definable
molecular composition of SOC, 2) relatively little variation in SOC across field sites, and 3)
inorganic carbon constitutirtge primary form of soitarbon particularly for Montana soils.
Exploration into alternative data reduction and statistical modeling techniques continues in an
effort to increase prediction accuracy, model parsimony, and computational efficiency. As
research matures for this emerging spectroscopic method, nevdépldyable equipment

should be developed to exploit the unique ability of LIBS to rapidly characterize soil elemental
composition.

VisNIR and LIBS are fundamentally different, yet complemgngpectroscopic techniquekhe

LIBS technique is an elemental analysis method that can quickly determine elemental
composition of heterogeneous material, whereas VisNIR is based on the fundamentals of light
energy absorption by molecular bond vibratioFtse research teaattempted to take advantage

of these fundamental differences by combining spectral information obtained by VisNIR and
LIBS sensors. It was hypothesized that this may provide more accurate, robust, and spatially
transferable soitarbondetermination than individual sensors currently permit. The 120 cores
interrogated with LIBS, as discussed previously, were concurrently scanned with VisNIR.
Preliminary exploration of combining VisNIR and LIBS spectra was completed using data in
2007 (78cores) and PLS regressiddombining LIBS and VisNIR data slightly improved TC
predictions, but did not improve IC or SOC predictions compared to individual sensor results.
Theresults suggest that PLS regression is sensitive to large predictor ddtasetaspected

that the 2046 LIBS wavelength predictors dominated the PLS analysis and overwhelmed
information found in the 216 VisNIR wavelength predictors. Reduction of LIBS spectra poses a
difficult challenge to overcome. Other approaches may leetaluse the data at the current
resolution to build better predictive spectral models for TC, IC, and SOC, regardless of the
number of predictor variables; however alternative multivariate statistical and data mining
approaches continue to be tested.

VisNIR and LIBS spectroscopy have the potential to fill the growing need for rapid, accurate,
and inexpensive methods to measure, and verify soil organic carbon change. These
fundamentally different techniques performed individuallystlyas expected; howev the
combined LIBSVisNIR data array did natonsistentlymprove predictive accuracies over
individual sensorsA field unit with a LIBSVisNIR array mounted in a soil penetrometer, when
fully operational, would allow for rapid soil profile charactation and mapping at field and
landscape scales.
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1. Overview and Organization of Report

This report summarizes research to study and compare two different spectroscopic techniques for
conducting soil characterizationisible and neamfrared diffuse re#ctance spectroscopy
(VisNIR) and laseinduced breakdown spectroscopy (LIBS).

Section 2 presents a study of VisNIR, and Section 3 presents a study of LIBS. Sectisems
the results of an updated LIBS study with modified instrumentation. In Ségtibe results of

the two techniques are compared and analy&adtion 5 also discusses research to use the two
techniques in combination in order to enhance results.
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2. On-the-go VisNIR: Potential and limitations for mapping soil clay and
organic carbon

Bricklemyer, R.S., and D.J. Brown. 2010.-@-go VisNIR: Potential and limitations for
mapping soil clay and organic carbon. Comput. Electron. Agric. 7€2269

Abstract

In situor onthe-go visible and near infrared (VisNIR) diffuse reflectance spscopy has been
proposed as a rapid and inexpensive tool for intensively mapping soil texture and organic carbon
(SOC). While lakbased VisNIR has been established as a viable technique for estimating
various soil properties, few experiments have coegb#ne predictive accuracy of-time-go and
lab-based VisNIR. In this study, eight north central Montana wheat fields were intensively
interrogated using ethe-go and lakbased VisNIR. The othe-go VisNIR system employed a
spectrophotometer (3582224 i, 8-nm spectral resolution) built into an agricultural shank
mounted on a toolbar and pulled behind a tractor. Regional (Mikeldeout crossvalidation)

and hybrid (regional mod el i ncluding randomly
models vere calibrated using partial least squares regressionbdsda spectral data

consistently provided more accurate predictions thathexgo data. However, neither situ

nor labbased spectroscopy yielded even squantitative SOC predictions. Foydrid models

with 9 local samples included in the calibrations, standard error of prediction (SEP) values were
2.6 and 3.4 g Kgfor lab and orthe-go VisNIR respectively, witlssoc= 3.2 g kg'. With an

SOC coefficient of variation (CV) = 26.7%, everthwa relatively low SEP values, there was

little SOC variability to explain. For clay content, hybrid +7 calibrations yielded lab SEP = 53.1
g kg* and residual product differential (RPD) = 1.8 withtbe-go SEP = 69.4 g kand RPD =

1.4. With more vaability (Sciay= 91.4 g kg and CV = 49.6%), both lab and-time-go VisNIR

show better explanatory power. There are a number of potential explanations for degraded on
the-go predictive accuracy: soil heterogeneity, field moisture, consistent sanmgaaiateon,

and a difference between the spatial support éheilgo measurements and soil samples

collected for laboratory analyses. In terms of predictive accuracy, our results are largely
consistent with those previously published by Christy (2008)pbthe-go VisNIR was not able

to capture the subtle SOC variability in Montana soils. Though the current configuration of the
Veris onthe-go VisNIR system allows for rapid field scanning;tble-go soil processing (i.e.

drying, crushing, and sievingpuld improve predictions.

2.1 Introduction

Soil properties, includingasl organic carbon (SOC) arsbil texture,vary spatially across
landscapegMcBratney and Pringle, 1997 o costeffectively capturesoil variability, on-the-

go Msible andnearinfrared (VisNIR) spectroscopy has been proposed as a rapid and inexpensive
method ofintensively measuring and mappiS@C soil texture (i.e. clay contengnd other soil
propertiefAdamchik et al., 2004; Christy, 2008; Gehl and Rice, 200/hile lakbased

VisNIR has been established as a viable technique for the estimation of multiple soil properties
(Brown et al., 2006; Morgan et al., 2009; Reeaad McCarty, 2001; Shepherd and Walsh,

2002; Viscarra Rossel et al., 2006; Waiser et al., 2@0W) there are a few published studies of

in situ VisNIR (BenDor et al., 2008; Morgan et al., 2009; Viscarra Rossal., 2009; Waiser et

al., 2007) few experiments have evaluated the potential and limitations of VisNtResgo for
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SOC or soil clay conterfChristy, 2008; Shibusawa et al., 1999; Shonk et al., 1991; Sudddth
Hummel, 1993a; Sudduth and Hummel, 1993b)

Researchers have evaluatedtased estimation of SOC and soil clay content using VisNIR
spectroscopy applied tor-dried, crushed and sieved soil samples for a diverse range of soil
materials and caliltion-validation designgViscarra Rossel et al., 200650il organic carbon
content has been estimated using VisNIR spectra with root mean square error (RMSE) ranging
from 0.9 g kg to 12.7 g kg, depending uposoil diversity and validation riggBen-Dor and
Banin, 1995; Brown et al., 2006; Islam et al., 2003; McCarty et al., 2002; Morgan et al., 2009;
Reeves et al., 1999; Shepherd and Walsh, 2002; Vasques et al., 300Barly, soil clay

content has been predicted on prepared soils with RSME = 11 to 95(BdmDor and Banin,
1995; Brown et al., 2006; Islam et al., 2003; Janik et al., 1998; Shepherd and Walsh, 2002;
Waise et al., 2007) If these results are screened to only include independently validated
calibrations (Brown et al., 2006), the literatstgggests that labased VisNIR can provide semi
guantitative estimation (RPD = 1%0;with RPD>2.0consideredjuanttative) of SOC and clay
content.

Onthe-go and statiin situ VisNIR methods introduce unique challenges for accurate
determination of soil properties compared to controlled conditions in the laboratory. Natural soil
heterogeneity, macraggregation, anfield moisture content have been identified as variables

that can reduce the predictive accuracy of VisNIR metkGtssty, 2008; Morgan et al., 2009;
Sudduth and Hummel, 1993a; Waiser et al., 20@8nsors maorg through the soil can also

cause inconsistent soil presentation, smearing, and spectral data that are averaged over some
distance traveled, depead on acquisition time and velocity, which can also degrade accurate
VisNIR predictiongMorgan et al., 2009; Sudduth and Hummel, 1993a; Waiser et al.,.2007)
Bothin situand labbased VisNIR accuracy statistics are affected by soil diversity and validation
rigor (Brown et al, 2005; Morgan et al., 2009; Waiser et al., 2007)

Static VisNIR is accomplished by holding a spectrometerdpte stationary on a soil face for
interrogation, potentially via a penetrometer mounting. This method has been tested on exposed
soil facedn pit walls(BenDor et al., 2008; Viscarra Rossel et al., 20@Xterior walls of
extracted soil core hol¢BenDor etal., 2008) and the exterior walls of intact cor@dorgan et

al., 2009; Waiser et al., 2007Waiser et al(2007)predicted clay content in fielchoist intact

soil cores using partial least squares regression (PLSR) muadiéty werevalidated usig 30%

of cores randomly held out (RMSD = 61 g'igind wholefield out cross validation (RMSD =
average of 89 g kiy 64- 143 g kg across 6 fields). For this study, smearing of the soil surface
increased the 30% validation RMSD to 74 g kdAs partof the same field campaign, Morgan et
al. (2009)prediced SOC in fieldmoist intact soil cores using partial least squares regression
(PLSR) models validated using 30% of cores randomly held out (RMSD = 5% gqukd whole
field out cross validation, with RMSD increasing an average of 1.3'g-8g! to 4.5g kg*

across 6 fields. Smearing had only a minor effect on SOC prediction statistics. Rossel et al.
(2009) using a large regional spectral dataset for calibration (1287 laboeratmiy4 field
collected specd), predicted clay content with RMSE = 7.9% clay. Ben et al.(2008)

predicted SOEwith RMSE = 1.2 g kg; however, samples used for model validation were not

1 SOC was estimated assuming 58% organic carbon in SOM (Nelson and Sommers, 1982).
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completdy independent of those used for calibration. B et al.(2008)oncluded that the
method has good potential fiorsitu soil characterization and requires additionatigtand
validation using independent samples.

Onthe-go VisNIR typically involves a spectrophotometer either enclosed within or connected to
(via fiber optics) an implement that is inserted into the soil and pulled behind a tractor. Several
surface soil pperties including surface SOM and SOC have been mapped usinggm

VisNIR with varying degrees of success. Shonk ef1&l91)used a single wavelength diode

(red, 660 nm) to predict soil organic matter (SOM) in-tgmé with goodsuccess (R> 0.83,

SOM = 16%). Sudduth and Hummgl993a; 1993hgleveloped an othe-go NIR spectrometer
(16502650 nm) system that predicted surface SOC with standard error of prediction (SEP) of
2.3 g kg' SOCin laboratory tests; however, SEP increased t@%§" in independent field

tests. Shibusawa et §1.999)tested a prototype ette-go VisNIR (4001700 nm) instrument;
measured SOM wasdhly correlated to certain NIR wavelengths, however independent
validation was not executed. More recently, Chr{2808)reported good predicted@aacy

(RMSE = 3.0 g k@) for mapping SO€&in Kansas (SD = 5.4 kg*, SOC = 3.626.3g kg™) using

a shankmounted orthe-go VisNIR sensor (950650 nm) and whotéeld crossvalidation (n =

8 fields). To the best of our knowledge, there are no stpdigisshed in the utility of onthe-go
VisNIR for soil clay content estimation.

The primary objective of this study was to compare the predictive accuracy for estimating SOC

and soil clay content measuriedsituwith an onthe-go VisNIR sensor versus a kased sensor
interrogating akdry, sieved soil sampleskesearcheralso tested regional (i.e. whediield out)

cali bration models versus hybrid regional mo d
calibration samples), and quantified the changa@aiction accuracy of hybrid models with

increasing numbers of local samples in the calibration.

2.2 Materials and Methods
2.2.1 Study Area

The study area for this research wathe north central regioof Montana, USA(Figurel).

Thisregion is characterized by soils formed in glacial till on gently rolling topography in a

frigid, ustic continental climate Soils in the study area wenet highly weathered and typically
werecalcareousvithin 0.5m of the surface. Aridic intergradesfrigid, ustic, Mollisols,

Entisols, and Inceptisols predominéteCropping systems in the study area generally consisted

of reduced tillage, small graiiallow rotations with a significant acreage managed by direct

seeding (i.e. naill). All eight sampling sites had a general cropping history of cultivation
beginning in the 19advdotatiopsrwihgrnulépte siliage gperaitions peh e a t
year and finally conversion to a diresgeded whedtllow rotation between 2004 and 2005.
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Figurel.Geographical location of the study area with eight (8) selected farm fields.

2.2.2 Digital and Field Data

The sampling desigand data collectiofor this project was muHieveledand multifaceted.
Eight farm fields(259hedares hd|; 640acres &d) were selectedt randonfrom a larger
population of farm fields enrolled in a carbon offs&trketingpilot. The eightselectedields
were each divided into 16.2 k0 ac)subfields and one subeld was randomly chosen for
VisNIR scanning and saslamplingin the fall of 2006

The research teamtensively scanned each sfibld using a new commercially available-on

the-go VisNIR sensor (Veris Technologies Inc., Salina, KS, USA). Fields were scanned
approximately a week at rains to allow enough dry down time to permit field access. The

Veris system employed a spectrophotometer{&5®4nanometersrim], 8nm spectral

resolution) built into an agricultural shank mounted on a toolbar and pulled behind a tractor
(Christy, 2008) Spectral measurements were made through a sapphire window mounted on the
bottom of the shank with fiber optic cables transferring tifas reflected light from the soil to
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the spectrometer and into a laptop computer for storage. The shank was lowered to
approximately 10 cm into the soil and pulled at approximately 5 km/h alongs#aced, north
south transects (Figure 2). Approximgt20 spectra were acquired per second and a spectral
average was calculated every-3.5, representing approximately 4 m of travel. Spectral
averages were stored on the laptop computer in conjunction with Wide Area Augmentation
System (WAAS) reatime orrected GPS data for each point.
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Figure2. Example of orthe-go northsouth oriented transects showit
data collection points (open circles) and 100 reference soil sample
locations (black crosses). Blank areas within tretss&ere caused by
sensor skips and temporary WAAS GPS signal loss.

Soil sampling was designed to capture representative variability within eaélelsubA 15 m
grid, following the same transects used for VisNIR scanniag, superimposed over eaclosu
field and 100georeferencedrid intersections were chosen randomly wi0am spatial
inhibition function added to ensure representative coverage of tHeeklifFigure2). Three
surface soil samples-I0 cm) were takendng a slide hammer and 5 cm diameter coring tube
in a 1 m triangular configuration straddling the VisNIR trans¢etach of the 100 selected
intersection points and homogenized for further analysis in the lab. Sampledriedrerushed
to pass a 2 mmeve, andscanned using a laiasedVisNIR spectrometeproduced by
Analytical SpectrbBDevices, Inc. (ASD Inc., Boulder CO, USA; FieldSpec RB&#)2500 nm 3
and 10 nm spectral resolutiofts the512 element silicon photdiode array350-1025 nm)and
INnGaS(10252500 nm)detectorsrespectively. Soil total carbon (TC) was measured by dry
combustion (LECO TruSpec, Leco Corp., St. Joseph, MI), soil inorganic carbon (IC) was
determined by modified pressure calcimeter me{{&ebrrod et al., 2002xnd soil organic
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carbon (SOC) was determined tne difference (®C = TCi IC) (Bricklemye et al., 2007)

Soil clay content was determined by pipette metftdeke and Bauder, 1986fror SOC and clay
content, the standard error of laboratory measurement (SEL) was estimated using replicate
laboratory measurements as described by Work21@@)

On-the-go spectral data used for model calibration and validation were extracted using GPS
coordinates. Using ArcMap (ESRI, Redlands, CA, USM)the go measurement locations

were matchedvith the nearest georeferenced soil sampling location and the corresponding
VisNIR spectral data were extracted for ppsicessing, partial least squares regression (PLSR)
modeling, and accuracy assessmentspéctrglab-based andn-the-go) werechecked for

errors andmoothed using cubic smoothing splines wittderivativesextractedn 10 nm
incrementdirectly from spline fits following methods outlined in Brown et al. (2006).

2.2.3 Partial Least Squares Modeling

Regi onal &Partibl Lé&aksBgumres RegressioRI(SR calibration models were derived

for both SOC and soil clay content. Regional models were constructed employing digltiole

out crossvalidation approaciwhereby each field was held out in turn for model validation, with
datafrom the other seven fields used for model calibration. For example, data for field #1 was
held out from the calibration seind data from fields-8 were used to calibrate PLSR models to
independently predict SOC and clay content for field #1. Thea,foam field #2 was held out

and new PLSR models were derived using data from fields 1-8rd Bredict SOC and clay

content for field #2. The systematic removal of holding out data from whole fields, calibrating
new PLSR models using data from theagning fields, and predicting SOC and clay content for
the held out field continued until each of the eight fields had been predicted. For hybrid models,

researchers ncl uded 1,

2,

3,

4,

S,

7,

and

9-out andoml

validation field in the calibration set, with the sam&RI crossvalidation regional modeling
approach. To test for potential loss in prediction accuracy due to differences in the spectral
ranges of the two sensors (ahsed = 35@500 nm, orthe-go = 3%-2200 nm), regional and
hybrid PLSR calibration models were also derived usingatajuired spectra reduced to the

same spectral range as thetbe-go spectrometer.

The quality of PLSR model fit was evaluated using performance statistics derived from the
regression of PLSR predicted vs. laboratory measurer(i@man et al., 2005; Gauch et al.,

2003)

MSD = a (Ypred - Ylab)%

Bias=g (Ypred i Y'a%

SB = Bia¢
NU = (1- b*3 var(Yiap)
LC= (1-r) 3 var(Ypreq

SEP= \/a Vo Y'ab%, _1)

n

(1)

(2)

®3)
(4)
()

(6)
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SER, = VSEF - SEL (7)

RPD = SY_Va%EF;dj (8)
RPL = (SER- SE%EL ©)

where b and?are the slope and square correlation, respectively, from theshpamstes

regression of ¥eq0Nn Yiap, SEP = standard error of prediction, RPD = residual product
differential. Lack of accuracy is described by portioning mean squared deviation (MSD) into
three components: squared bias (SB),-aoity regression line (N) and lack of correlation

(LC). Researcherderived the RPL statistic (Ratio of Prediction error to Lab reference error) as a
simple method to scale SEP relative to the precision error of the standard laboratory reference
method (SEL).

2.3 Results

Summary statistics for standard laboratorgasured soil organic carbon (SOC) and soil clay are
presented iTablel. Values for SOC did not exceed 27.2 ¢ kand clay content ranged

between 55 and 483 g kacross eight farm fields. Soil organic carbon varied litttess all
sites (@0 =CW8.2 236 kg%) compar e-il, C¥ ©49.6%).i | cl ay
Standard error of lab measurements (Sfl= 0.95 g kg, SELay = 19.7 g kg') accounted for

22% and 29% of clay and SOC variation, respectively.
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Tablel: Summary Statistics

Table 1.

Summary statistics for standard laboratory measured soil organic carbon (SO(
soil clay content in eight (8) north central Montana, USA wheat fields.

N Mean G Median Min Max CV (%) SEL

gkg" gkd' gkg' gkg' gkgt %  gkg'

SOC 765 12.1 3.2 11.8 6.0 27.2 26.7 0.95

Clay 311 216.2 914 209.0 550 483.0 42.3 19.7
O = standard deviation, CV = coef"

of laboratory measurement

The research teadid not achieve even semuantitative levels of validation accuracy for

regional SOC modeling (

Table2: PLSR model statistics

Table 2.

Regional and hybrid PLSR model statistics predicting soil organic carbon (SOC) and soil clay con

lab-based (Lab) and on-the-go (In Situ) VisNIR.

SOC (gkg)

(

Regional (N=765) Hybrid-9 (N=693)

Regional (N=311)

Spectra Ful Reducec Reducec Full  Reducec Reducec Ful Reducec Red
Presentatior Lab Lab In situ Lab Lab In situ Lab Lab In:
SEP 2.8 2.8 3.5 2.6 2.6 3.4 62.4 63.4 9
RPD 1.1 1.1 0.9 1.3 1.3 1.0 15 1.4 1
RPL 2.8 2.8 3.5 2.5 2.5 3.4 3.0 3.1 4

=3 0.36 0.36 0.00 0.42 0.39 0.02 0.59 0.59 0.

SB (%f 0.1 0.7 0.2 0.6 0.1 0.3 9.2 14.0 9
NU (%)f‘ 23.5 24.5 80.8 36.1 43.3 84.5 51.2 44.1 5¢
LC (%)A 76.4 74.8 19.0 63.3 56.6 15.2 39.6 41.9 3¢

Full = full spectrum (350-2500 nm), Reduced = reduced spectrum (350-2200 nm), MSD = mear
NU = non-unity of regression line slope, LC = lack of correlation, RPD = residual product different

RPL = ratio of prediction to laboratory error [((§EBEL2)°'5)/SEL]
A percent of mean squared deviation
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). The best regional SOC calibration model (RPD = 1H, R 1.8) was derived using liased
spectroscopy applied to prepared samples (Table 2, F&swBthin situdata yielding less

accurate predictions (RPD = 0.9, RPL = 2.3). Though RPL valuextrally low, standard

error of prediction (SEP) valu¢®.8and 3.5g kg* for lab-based anih situdata, respectively)

were similar tdlsoc(3.2 g kg'). The majority of mean squared deviation (MSD) for SOC
predictions was attributed to lack of correlation (LC) using prepared sample data (LC = 76.4% of
MSD) and nonrunity of regression line slope (NU) usiimgsitudata (NU = 80.8% of MSD).
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Table2: PLSR model statistics

Table 2.
Regional and hybrid PLSR model statistics predicting soil organic carbon (SOC) and soil clay content using full and reduced spectru
lab-based (Lab) and on-the-go (In Situ) VisNIR.

SOC (g kd) Clay (gkg)
Regional (N=765) Hybrid-9 (N=693) Regional (N=311) Hybrid-7 (N=257)
Spectra Ful Reducec Reducec Full  Reducec Reducec Ful  Reducec Reducec Full  Reducec Reducec

Presentatior Lab Lab In situ Lab Lab In situ Lab Lab In situ Lab Lab In situ
SEP 2.8 2.8 3.5 2.6 2.6 3.4 62.4 63.4 90.3 51.6 53.1 69.4

RPD 11 1.1 0.9 1.3 1.3 1.0 15 14 1.0 1.8 1.8 14

RPL 2.8 2.8 35 2.5 2.5 3.4 3.0 3.1 4.5 2.4 2.5 3.4

R 0.36 0.36 0.00 0.42 0.39 0.02 0.59 0.59 0.17 0.75 0.74 0.50

SB (%' 0.1 0.7 0.2 0.6 0.1 0.3 9.2 14.0 9.3 10.7 13.1 7.7

NU (%f 23.5 24.5 80.8 36.1 43.3 84.5 51.2 44.1 56.4 43.9 40.9 52.2

LC (%)A 76.4 74.8 19.0 63.3 56.6 15.2 39.6 41.9 34.3 45.4 46.0 40.1
Full = full spectrum (350-2500 nm), Reduced = reduced spectrum (350-2200 nm), MSD = mean squared deviation, SB = squared
NU = non-unity of regression line slope, LC = lack of correlation, RPD = residual product differential, SEP = standard error of predic

RPL = ratio of prediction to laboratory error [((§EBEL2)O'5)/SEL]
A percent of mean squared deviation
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2) Lab-based Regional SOC Validation
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Figure3: Wholefield out validation of soil
organic carbon predicted usingrpal least
squares regression modeling of-ladsed (a)

and onthe-go VisNIR (b)

Figure4: Hybrid model validation of SOC

predicted using PLSR modeling of talsed

(a) & onthe-go VisNIR (b)

Regional calibrations for soil clayontent were more accurate using-based interrogation of
prepared samples. The regional clay model derived from prepared sample spectra achieved
semtiquantitative accuracy (RPD = 1.5, RPL = 3.0). Calibrations usinig thieu spectra, again
yieldedlimited prediction accuracy (RPD = 1.0, RPL = 4.5). Theldabed regional clay model
SEP (62.4 g Kg) was substantially lower than both ihesituregional model SEP (90gkg")
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andﬁc|ay(91.4 g k') (Table 2, Figres. 36). The majority of the MSD for both prepared
sample andh situderived regional clay models was attributed to NU (51.2% and 56.4% of
MSD, respectively).

a) Lab-based Regional Clay Validation 3) Lab-based Hybrid-7 Clay Validation
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Figure5: Wholefield out vdidation of soil Figure6: Hybrid model validation of soil clay

clay content predicted using partial least content predicted using PLSR modeling of-la
squares regression modeling of-ladssed (a) based (a) &onthe-go VisNIR (b)
& on-the-go VisNIR (b)
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|l ncreasing the number of Al ocal o samples adde
yielded some improvement in predictive accuracy. Adding 1 to 9 local samples to regional clay
models increased RPD values from 1.4 tof@r8ab calibrations and 1.0 to 1.4 fiorsitu

calibrations Figure7). There were, however, only slight accuracy improvements for SOC

calibrations when local samples were added to regional mdedglg€7, Table 2).

Hybrid PLSR Model Accuracy

2.0

1.5

1.0

RPD

0.5

00 T T T T
0 2 4 6 8 10
# of local samples in calibration model

—O—Lab-based Clay —&— On-the-go Clay
--0--Lab-based SOC --l--On-the-go SOC

Figure7: Predictive accuracy response to the addition of local samples in hybrid partial lee
squares regression calibration models for soil clay content & soil organic carbon (SOC)

Differences in the speet range of the sensors had little effect on prediction accuracy. Reducing
the spectral range of the kalsquired data to match the spectral range of thth@go sensor

only reduced Rfrom 0.42 to 0.39 for the hybril SOC modelandSEP and RPD were

unchanged (Table 2). Regional clay models were only slightly degraded with SEP increasing 1.0
g kg" and RPD decreasing 0.1 (Table 2). Similarly, the hybrid clay model SEP increased 1.5 g
kg (Table 2).
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2.4 Discussion

Both labbased and othe-go SOC preditive accuracy results, expressed as SEP, were similar to
studies reviewed in the introduction, although not highly correlated with laboratory
measurementsBoth labbased and othe-go regional and hybrid SOC modPDvalues(0.971
1.3)were lower thamn-the-go RPD (1.7)yeported by Christy2008. But, measured SOC

standard deviatiorli.c= 3.2 g kg) in this studywassubstantiallyless thartlsecreported by

Christy (5.1 g ki, 2008Y. Interestingly, SEP values were similar between this and the Christy
(2008) study (3.5 and 3.0 g kgrespectively). Clay content was more vasaiian SOC (CV=
42.3% vs. 26.7%, respectively), and clay models had higher RPD values. It is important to
remember that given constant prediction error (SEP), increasing target parameter vagability (
will result in improved 7and RPD statistics. Sbe poor performance of ehe-go VisNIR in

this studycouldbe due to the low variability in SOC and to a lesser extent clay content. The fact
that even the labased VisNIR calibrations were very poor for SOC and only-sgmmantitative

for clay contentends credence to this argument.

Previous studies have highlighted the necessity of a wider spectral range to accurately predict
SOC. For example, Brown et &006)reported that reflectance between 20@500nm was
important for SOC and clay content prediction. Similarly, Mouazen(@086)suggested that
collecting diffuse VisNIR reflectance between 1700 and 2500 nm improved prediction accuracy
for wet, in situsoil nitrogen ), carbon C), sodium Na), andmagnesiumiNig) measurments;

and Sudduth and Humm@l993a)reported that 1660 2620 nm was the most predictive range

for organic carbon. The spectral range of theh@go sensor in this study was 36@200 nm,
compared to 350 2500 nm captured by the laboratamgtrument. However, differences

between the spectral ranges of thebalsed and othe-go spectrometers did not contribute to
meaningful differences in predictive accuradyeresultsfrom this studysuggest that 1)

spectral information between 2280d 2500 nm did not improve lab calibrations for SOC and
clay, and 2) the reduced spectral rangesnot responsible for degraded-tive-go sensor

prediction accuracy for this study.

Onthe-go VisNIR measurements also have unique concerns related ilmuoardly collecting

data while moving through the field. Soil passing the sensor during scanning could cause
different wavelengths to be captured at different physical locaf®mssty, 2008; Sudduth and
Hummel,1993a) This potential problem was not a consideration in this study because the on
the-go instrument employed an array spectrometer that captured the entire spectrum
simultaneously by using a grating to separate the reflected light according to wtvedenlg

then projected the light onto an InGaAs detector with an integration time of 0.042 s. Scanning
type spectrometers, such as thebhalsed instrument used in this study, measure one wavelength
at a time and progress through the entire spectrumanithtegration time of 0.1 s to complete a
scan. A scanning type spectrometer usethergo could degrade accuracy by measuring soil
reflectance across different soil scenes as it collects data through the spectrum. The scanning
nature of the lalbasednstrument was a neissue in this study because soil samples were
stationary when interrogated in the laboratory.

o

2 Uyocestimated for the Christy (2008) study assuming 58% SOC in soil organic matter (Nelson and Sommers
1982).
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Soil heterogeneity may have caused reduced prediction accuracy forttheegmVisNIR

sensor compared to the tahsed spectrometer. Eigtation just prior to field sampling

operations likely increased spatial and temporal variation of soil moisture across the study area.
OxygenHydrogen O-H) bonds associated with water have two strong absorption features near
1400 and 1900 nm which maave obscured spectral information important taéleego SOC

and clay predictions. More so, inconsistent soil roughness occurring as solaggoegates

were disturbed by pulling a shank through the soil also may have negatively impacted accuracy
realts. This is consistent with previous studies that have indicated that in situ measurement
accuracy can be degraded by heterogeneity in soil moisture, aggregation, and surface roughness
(Christy, 2008; Morgan el.a2009; Shonk et al., 1991; Waiser et al., 2007)

Inconsistent soil presentation and soil smearing are other possible sources of error in this study.
Sudduth and Hummé1993a)reported considerable reflectance value offset as sémsanple

height varied from 5 to 25 mm. The quastpphire window of the etihe-go sensor in this

study slid along the bottom of a trench opened by the lead edge of the shank. Under ideal
conditions, the sensor window would have consistent soil contact) wtamtains a constant

view height and angle for the reflected VisNIR signal. However, wheat field surfaces are not
smooth and pulling a VisNIR sensor behind a tractor over rough and uneven surfaces possibly
caused inconsistent soil contact with the battf the trench, thus view height and angle

variation could have occurred. Additionally, soil smearing, particularly under the moist
conditions during field sampling, could have occurred as the shank and sensor window slid along
the trench. Simulating isNIR sensor being pushed vertically into soil, Waiser gai07)

and Morgan et a(2009)both reported higher RBD for predicting clay and SOC when field

moist intact soil cores were smeared prior to VisNIR interrogation.

Differences in spatial suppdibungan et al., 200Zpr the reference laboratory analysesins.

situ VisNIR interrogations could have impacted the estimated accuracyd$du VisNIR soll
calibrations. Data obtained he-go was the average of 20 spectra collected at ~ 5 km/h along
a ~108cm deep trench, with each resulting spectrum capturing appaitedyt5 m of travel.

For bothin situand labbased VisNIR model calibration and validation, we extracted thidée O
cm deep, 5 cm diameter soil cores at the vertices of a triangle that measuddrig each side
and straddled the transect. Thesegamwere composited and homogenized for laboratory
VisNIR and reference analysi€hristy (2008), however, collected reference soil samples for
model calibration and validation that were 1 cm deep, 3 cm wide, and 1 m long from the bottom
of the trench dectly interrogated by the ethie-go VisNIR sensor. Support differences between
the onthe-go sensor and laboratory analyses could have contributed to the ipaotexs. lab
based calibrations reported in this study.

Most of the potential problems wibnthe-go VisNIR soil spectroscopy are eliminated in the
laboratory due to processing steps that remove moisture, remove gravels, break up aggregates,
homogenize soil material, and ensure good sample presentation. An instrument that processed
soils onthe-go, in the field prior to VisNIR interrogation would likely produce substantially

better calibrations. Alternatively, perhapstbie-go VisNIR should only be applied to fields

with substantial variability in soil properties of interest.

Includinguptoni ne o6l ocal 6 samples in hybrid models h
accuracy for SOC and clay content. Il ncluding
had no apparent impact on predictive accuracies, likely because there was littleria®iitya
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across the study area (CV = 26.7%). In comparison, clay cdrddrgreater variation across the

study areaQV =42.3%)and adding Ol ocal 6 samples to regioa
from 1.5 to 1.8 and 1.0 to 1.4 for Kalased andh situinterrogations, respectively. This finding

suggests that hybrid models would be more effective for predicting target variables with greater
variability.

2.5 Conclusions

Lab-based VisNIR spectroscopy provided somewhat more accurate predictions shaon
the-go VisNIR sensingIn terms of SOC predictive accuracy, our results are largely consistent
with those previously published by Christy (2008), butlmago VisNIR was not able to capture
the subtle SOC variability in Montana soilEstimating SOC iniélds with low SOC variability

did not produce usable results for eithestbego or labacquired spectra. Spectra from prepared
samples did, however, yield semuantitative regional and hybrid calibrations for soil clay.
Regional clay models derivétbm onthe-go VisNIR spectra did not provide useful predictions;
however hybrid onthe-go soil clay models, using up sevenocal samples in the calibration
approached sergjuantitative predictive levels (RPD = 1RPL = 3.4. This suggestsrethe-go
VisNIR spectroscopkiaspotential for mapping soil clay, assuming that local samples are
available for recalibration at every fieltResults comparing spectral ranges of the two
instrumentsuggest increasing the spectral range of ththeigo sensor sinar to that of a lab
based spectrometer will not improve predictions for this application. Our findidigatethat
onrthe-go VisNIR might not be effective in mapping fields with relatively low target property
variability. Given the better performanagh processed soil samples in the laboratory,
researchers and equipment designers might consider developing instruments to process soils on
the-go, in the field.
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3. Intact soil core total, inorganic and organic carbon measurement using
laser-induced breakdown spectroscopy (LIBS) (Accepted for publication,
SSSAJ)

Abstract

Laserinducedbreakdownspectroscopy (LIBS) is an emergietemental analysigchnology

with the potential t@rovide rapid, accurate and precise analysis of soil constifiseicts as

carbon in situacross landscapefesearchersvaluated thaccuracy oL IBS measuringsoil

profile carbonn field-moist, intact soil coresimulaing conditions that might be encountered by
a probemounted LIBS instrument measuring soil profile carbositu The teaninterrogated

78 intact soil cores from three northnteal Montana wheat fields. Samples from each core were
analzed in the laboratory for total carbon (T@Jprganic carbon (IG)and soilorganic carbon
(SOC).Partial least squares @gression (PLS2) calibration models were derived using 58 cores
(227 samples) and independently validated at the-$ieddie with the remaining0 coreq79
samples)Researchersbtained the best LIBS validation predictions for t€<0.66, SEP = 5.3
gkg?, RPD = 1.F followed byTC (r* = 0.63, SEP = 6.0 g Ky RPD = 1.§ and SOQr?=0.22,

SEP = 3.2 g k§, RPD=1.1) Though the standard error of prediction (SEP) for SOC was less
than that for TC and IC, low SOC variability resulted in I5vand RPDstatistics. Laser

induced breakdown spectroscopy is fundamentally an elemental analysis technique, yet LIBS
PLS2 models appeared to discriminate IC from TC. Regression coefficients from these models
suggested a reliance upon stoichiometric relationdiepseercarbon(247.8 nm) and other
elements related to total and inorganic carbon in the soil matrix [Ca (210.2 nm, 211.3 nm, and
220.9 nm), Mg (279.5280.4 nm, 285.26 nm), aslicon (Si) (251.6 nm, 288.1 nm)].

Expanding the LIBS spectral range to wap emissions from a broader range of elements related
to soil organic matter might improve SOC predictiori®esults indicate that LIBS spectral data,
collectedonintact soil cores, can be calibrated to accuratstimateand differentiate between

soil totaland inorganicarbonconcentrationsising PLS2 regression analysia lack of SOC
variability limited our ability to evaluate LIBS SOC prediction capabilities, \irigc= 3.47 g

kg' = 2.5 x SElgoc (standard error of thaboratory reference maagment) Calibration
performance statistics from this study were substantially degraded relative to previously
published research, a result attributed to the challenges of interrogating intact soil surfaces vs.
prepared soil samples. As research matimethis emerging spectroscopic method, new field
deployable equipment should be developed to exploit the unique ability of LIBS to rapidly
characterize soil elemental composition.

3.1 Introduction

There isagrowing need for rapid, accurate, and inexpensieghods to measure and verify soil
organic carbon (SOGequestratiofor national greenhouse gas accounting and the development
of a soil carbon trading mark@founcil, 1999; Gehl and Rice, 2007h particulartechniques

for the rapid measurement of S@Csituare requiredChristy, 2008; Gehl and Rice, 2007)
Laserinduced breakdown spectroscopy (LIBSan emergingpectroscopic technigder rapid
guantification & soil carbonand other soil constituent€remers et al., 2001; Ebinger et al.,

2003; Martin et al., 2003; Martin et al., 2004; Martin et al., 200Mpreover, the LIBS

instrument is capable of being mounted Bod penetrometeiMosierBoss et al., 2002y hich
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could be deployed for rapid soil profile characterization and mapping at field and landscape
scales.

Laserinduced breakdown spectroscopy (LIBSjundamatally anelemental analysiprobe
based on atomic emission spectroscopy. Thus LIBS has the potential to complement
characterization of soil minerals and organic molecules provided by vighleinfrared diffuse
reflectance spectroscofgrown et al., 2006; Clark, 1999; Hunt, 1982)ypical LIBS analysis
involves directing a focusadeodymiumdoped yttrium aluminum garn@id:YAG) laser onto
the surface oatarget materiajRadziemski and Cremers, 1989)he focused laser ablates a
small amount of surface material producergpandingolasmacontainingelectronically excited
ions, atoms, angmall molecules. Athese excited species reladaaver electronic statethey
emit light at wavelengths indicative of the elenarcbmpositiorof theablatedsample. Some

of theemission icaptured by a fiber optic cablédirected into a dispersivesctrometerand
recorded with a charge coupled detector (CQGIdgg et al., 2009; Cremers et al., 2001; Ebinger
et al., 2003; Martin et al., 2003; Radziemski and Cremers, 1989; Thompson et al., PO©6)
resuling spectrashowdiscreteemission lineshatrepresent electronic emissgior mostatoms
andions present in the ablated materidBS spectrdrom elementally complex samplesich

as soilsare spectrallgomplexas depicted ifrigure8. Thespectrally robusand complex

nature of LIBS allows one to detect every element present in the sample probed (above the
detection limit) on every laser shot.
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Figure8: A LIBS spectrum (20800 nm) of a reprentative soil core. LIBS spectra are typica
spectrally rich containing many emission lines for each element in the sample. Some of tl
emission features associated with the major elements present in the sample are identified
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Univariate calibrationsf LIBS spectra are generally complicated by chemical matrix effects.
Chemical matrix effects have been defined as chemical properties of the interrogated sample that
impact the relationship between emission line intensity (or area) and the concenfrdi®mn

element in the sample responsible for producing tha{@nemers and Radziemski, 2006;

Eppler et al., 1996; Gornushkin et al., 2002; Hakkanen and kdigpmola, 1998) More

specifically, matrix effectare related to the elemental and molecular composition of the sample,
plasma composition, within plasma interactions, and{saeple coupling efficiency.

Previously published studies have attempted to compensate for these matrix effects and increase
predictive accuracy by employing a variety of approadiadsgg et al., 2009)a) peak height or

peak area calibration to standards with known compogiibinger et al., 2003; Eppler et al.,

1996; Martin et al., 2003; Salle et al., 200@®) normalization of LIBS spectra to total emission
intensity(Clegg et al., 2009; Tdmpson et al., 2006jc) normalization of peak height or area to
another spectral featu(€remers et al., 2001; Eppler et al., 1996; Salle et al., 200)6)

employing a plasma physics model without the usalib@tion curves oiicalibrationfree

L | B (Salle et al., 2006; Yaroshchyk et al., 2QQ@) spectrally averaging multiple

interrogations per sample for calibration and and/or validdBonisquet et al., 2007; Bousquet

et al., 2008; Clegg et al., 2009; Eppler et al., 1996; Martin et al., 288)f) employing
chemmometric statistical approaches for predictive model calibi@mmsquet et al., 2007;

Clegg et al., 2009; Ferreira et al., 2008; Martin et al., 2005; Martin et al., 2010; Martin et al.,
2007; Sirven et al., 2006)

With proper calibration, LIBS can provide a precise and selective method for measuring metal
ions such alead Pb), beryllium Be), chromium Cr), andstrontium §r) in paint and soils

(Sirven et al., 2006; Yamamoto et al., 1996) Pb, and Ba in sar{@&ppler et al., 1996; &fris et

al., 2004) andcopper Cu), zinc n), andarsenic As) in wood preservative@viartin et al.,

2005) Though there have been relatively few applications of LIBS for soil carbon
determinationpublished calibrations show LIBS spectra to be well correlated with standard dry
combustion measurements of total soil carbon with repoftealues of 0.93 to 0.9&remers et

al., 2001; Ebinger et al., 2003; Miaret al., 2003; Martin et al., 2010; Martin et al., 2007)

There is; however, no published literature demonstrating the ability of LIBS to distinguish
between total and inorganic soil carbon

There has been little independent validation of publish&&ldalibrationgor soil carbon using
alarge number of soil sample€remers et a(2001)used a subset of 12 Colorado agricultural
soil samples from awentionally tilled farms to calibragLIBS model (f = 0.96) and verified

the modelwith a different subsgiN=8) of the same Colorado sqiss well as soils from Los
Alamos, NM(N=10)that formed in different parent materigécuracy = 3 to 14% rdlae
standard deviation)Ebinger et al(2003)usedsix randomly chosen soil samples from a dataset
of 18 samples collected from three Colorado farm fields to calibrate a mbodd).@9) then

used the model to predict the remaining 12 samples@r95). It is notyet standard practice in
LIBS spectr eosuddp y ntdee pemalledh t (Madimepdl.,@03; Martm v al i
et al., 2010; Martin et al., 20Q7While published research shows the potential of LIBSSOC
determination, further work is required with larger sample sets and more rigorous model
validation.

The soil samples employed in the studies cited above wetesjated prior to LIBS
interrogation. Préreatments included: adrying, sieving and pking in quartz tube€Cremers
et al., 2001L)pelletizing under pressu(Martin et al., 2004; Martin el.a2010; Martin et al.,
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2007) and treating with acid to remove carbonates, pelletizing in a tube, ashtiaig (Martin
et al., 2003) ThoughLIBS has been proposed asiarsitu SOC measurement tool (Gehl and
Rice, 2007), it remains to be demonstrated ithattu results will match those obtained with
prepared samplesTo our knowledge, the study reported in this paper is the first to neeswill
carbon content in fieldnoist intact cores without soil physical pretreatments.

The objectives of this study were to EMaluateheaccuracy of fielescaleLIBS calibrationsfor

soil profile carbonn field-moist, intact soil cores without soitgireatmentsand (2) determine if

TC, IC, and SOC can be differentiated using LIBS calibrations. Though important SOC
elements such as H, O and N cannot be detected with th&0P0Om LIBS spectral range

employed in this studyesearchertheorized thait might be possible to estimate SOC by
subtraction should Ca and Mg emissions support the discrimination of total and inorganic C.
The teandefined accuracy as agreement between LIBS measurements and standard laboratory
based soil measurements. Faldist intact cores were usedsimulateconditions that might

be encountered by a preb®unted LIBS instrument measuring soil profile carbositu.

3.2 Material and Methods
3.2.1 Study Area

TheA Gol den Triangl eo r egi o rsenedas auesedrdh studgarear a | M ¢
(Figure9). This regionwascharacterized by soils formed in glacial till on gently rolling

topography.Soils werenot highly weathered anderetypically calcareous withi®.5m of the

surface. Aridic inergrades ofrigid, ustic Mollisols, Entisols, and Inceptisols predomirthate

Cropping systems in the study area were generally reduced tillage smafiadjminrotations

with a significant acreage managed by disstding or ndill. All three samplig sites had a

gener al cropping history of cultiv-falowon begin
rotations with multiple tillage operations per year and finally conversion to a-deeded

wheatfallow rotation between 2004 and 2005.

3.2.2 Soil Sampng

In 2006, 78 intact cores were obtained from three 16.2 h&ieddb in north central Montana

with locations shown ifrigure9. Soil coring locations were selected based on surface stil (O
cm) visible and neainfrared (MsNIR) reflectance acquired for a parallel study focused on that
technology(Bricklemyer and Brown, 2010)Intact,4.45 cm dianeter by50 cmdeep soil cores
were extracted using a truockounted hydraulic soil sampling tube fitted with removable plastic
sleeves (Giddings Machine Co., Windsor, CO). The fietist intact cores were traported to
the laboratory and stored under refrigeration prior to interrogation.
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Figure9: Geographical location of the study area with 3 selected farm fields (A), & random
selected calibration (triangles) & validation (&%) core locations at the LYD (B), HOR (C), é
MAT (D) sites.

3.3  Core Interrogation

Researchensterrogated intact soil cores to simulate conditions that might be encountered by a
penetrometemounted LIBS instrument performinig situ soil characterizatio following the

general protocol of Waiser et €007) Eachfield moistcorewas interrogatedt 8 depths

through~ 3 x 3 cm windows cutin the plasticcoresleeve(Figurel10). A prototype Los Alamos
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